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Introduction 

During the first year of the research program efforts have concentrated on the devel- 

opment of the numerical methods that will form the computational part of the turbulence 

closure scheme. A wave model has been developed for the two-dimensional shear layer. 

This configuration is being used as a test case for the closure schemes. Various numerical 

schemes have been examined to give efficient solutions of the Rayleigh equation for this 

geometry. These include both spectral and finite difference methods. Secondly, numerical 

methods are under development to solve the non-separable Rayleigh equation. This solu- 

tion is required for the closure scheme in more complex geometries. A model problem has 

been used to assist in the algorithm development. Two-dimensional spectral methods and 

a hybrid spectral/finite difference technique have been developed. An analytic solution 

of the Rayleigh equation for a basic elliptic flow has been obtained. This will be used to 

verify the stability codes developed for arbitrary geometries. Other numerical methods for 

solving the Rayleigh equation based on the boundary element technique have also been 

examined. These solutions are forming the basis of a model for the shock structure in jets 

of arbitrary geometry. These activities are described briefly below. 

Turbulence Closure in a Mixing Layer 

A turbulence closure scheme using a wave model is being developed. An incompressible 

two-dimensional free mixing layer has been chosen as a test case. In the future the model 

will be used to predict the mean velocity and temperature fields in jets and describe the 

characteristic frequency and wavelength properties of the fluctuating flow field. 

Since the large-scale coherent structures develop spatially, they may be best repre- 

sented by spatial instability waves characterized by the solution of the Rayleigh equation. 

At present the Reynolds stress associated with the dominant large-scale structure is mod- 
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eled by the spatially-developing most unstable mode. 

involve the inclusion of a wider frequency spectrum. 

Future extensions of this model 

Both the traditional shooting technique and the methods proposed by Bridges and 

Morris (1984) have been used in the solution of the Rayleigh equation. It has been found 

that a Chebyshev polynomial of relatively high order is needed to obtain accurate solutions 

if the tau method is used. The matrix operations involved in this technique, which is the 

discretization method used by Bridges and Morris, consume a relatively large amount of 

computer time. This is particularly undesirable as this solution is only one part of the 

closure scheme. Different ways to construct the coefficient matrices have been investigated. 

These include: 

(1) a finite difference method and 

(2) a Chebyshev collocation method. 

Eigenvalues of higher accuracy than those obtained using the tau method have been ob- 

tained with the order of the matrices less than half of those in the tau method. The results 

for a mixing layer with a hyperbolic tangent mean velocity profile are shown in Table 1. 

The eigenfunctions are relatively insensitive to the precision with which the eigenvalues 

are obtained so that it is unnecessary to obtain highly accurate eigenvalues. It would also 

decrease the efficiency of the turbulence closure scheme. 

The wave model has been applied locally to il mixing !zyer with the mezz ve!cxity 

profile obtained from an analytic curve fit to measured data by Pate1 (1973). The calculated 

Reynold stresses are shown in Fig. 1. Note that the maximum value assigned to the 

instability wave stresses is based on the measured data and neglects the contributions 

from the small-scale turbulence. The distribution shows that there are regions of negative 

turbulent production associated with the large-scale structures. This was observed by 

Komori and Ueda(1985). Moreover, it is clear from Fig. 1 that the contributions to the 

Reynolds stress from the small-scale turbulent motion must be accounted for in the model. 
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The inclusion of the interaction between the the large-scale and the small-scale turbulence 

and the contributions of the latter to the flow development is clearly a requirement for any 

viable turbulence model. 
~~ 

Method N 

Tau 26 

Finite Difference 11 

Collocation 11 

Michalke( 1966) 

~~ 

Frequency Eigenvalue 

0.2 

0.2 

0.2 

0.2 

(0.367, -0.219) 

(0.383, -0.221) 

(0.389, -0.221) 

(0.382, -0.227) 

Table 1. Calculation of Eigenvalues 

It is recognized that turbulence comprises fluctuating motions with a wide spectrum 

of length and time scales and that different turbulent interactions are associated with 

different parts of the spectrum. Following the general ideas proposed by Hanjalic et a1 

(1980) we assume that the turbulent kinetic energy spectrum may be divided into parts 

associated with the large-scale structures and that associated with the residual motions. 

Since the large-scale structures, based on the present wave model, dominate the dynamics 

mechanism of a free shear flow, we further assume that the large-scale structures are most 

effective in extracting energy from the mean flow. The turbulent energy is then transported 

to the other scales of motion through vortex stretching or higher-order instabilities and is 

then dissipated by viscous effects. A spectrum division similar to Hanjalic et a1 may be 

proposed as sketched in Fig. 2. kr, IC, denote the turbulent kinetic energies associated with 

the large- and small-scale range and € 1  denotes the kinetic energy transfer rate across the 

inertial subrange. e represents the rate of energy dissipation in the small-scale structures. 

The transport equations for the kinetic energies may be written as 
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Figure 2. Sketch of turbulent energy spectrum 

An eddy viscosity hypothesis may be used to model the contribution to the Reynolds stress 

by the small-scale motions. 

... L --- wl lc lc :  ii and I, are tile veiocity and iengt'n scaies associated with the smaii-scaie motion. 

Additional assumptions are made for the small length and velocity scales, 

I ,  - u T - k, 31 2 / E ,  

where r is the time scale for the small-scale motions. Equation (2) can then be used to 

solve for k,, providing that the large-scale characteristics have been obtained from the 
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wave model and the rate of viscous dissipation is related to the rate of large- scale energy 

production by E - ky’2 / 1 .  Note that the latter assumption is equivalent to 

1, - 1 (ks/k1)3’2.  

Extensions to  this rather simple formalism are being examined. These include the 

extension of the Algebraic Reynolds Stress Closure to a multiple-scale decomposition of 

the turbulence. This extended model and the simpler model described here will next be 

applied to a calculation of the development of the two-dimensional mixing layer. 

2. Solution of the Non-Separable Rayleigh Equation 

This phase of research has centered on developing new, and improving existing, nu- 

merical methods to solve the non-separable Rayleigh equation. 

2.1 Review of Initial Progress - The first step in the solution of the Reynolds- 

averaged compressible equations of motion for jets of arbitrary geometry using a wave 

model is the description of the hydrodynamic stability of such flows. This requires the 

solution of a non-separable form of Rayleigh equation. The most unstable eigensolutions 

may then be used to model the Reynolds stress associated with the large-scale structures. 

A method has been developed to determine the eigensolutions of the Rayleigh equation 

in flows of arbitrary geometry. The equation to be solved is: 

( A  - a’)$ + (Za/R)VW Vfi = 0 (3) 

with boundary conditions: 

fi  is finite and fi  -+ 0 at infinity 
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where f i  is the pressure fluctuation, W(z ,y)  is the axial mean velocity, CY is the axial 

wavenumber (the complex eigenvalue), w is the wave frequency, and R = w - a W .  

In order to test various numerical algorithms for solving this problem a model problem 

with a known analytic solution has been posed. The boundary value problem is given by: 

with, 

q5=0 on dR 

where 

R := ((z,y) E R2 1 - 15  x , y  5 -1} 

The method that has been used to determine the eigenvalues a is a spectral method using 

a two-dimensional Chebyshev series approximation of the form: 

Here the summations are taken from 0 to N. 

The determination of CY goes as follows: i) The P.D.E. is integrated to eliminate all 

derivatives of the dependent variable. ii) This integral equation is discretized using the 

Chebyshev series, equation ( 5 ) .  iii) The boundary conditions are discretized. iv) Steps ii) 

and iii) reduce to the problem of determining all a such that: 

det[Aa’ + BCY + C] = 0 (6) 

where A, B, and C are (N + 1)’ x (N + 1)’ matrices depending on the discretization. v)  

Equation (6) is solved using globally or locally convergent schemes. 

2.2 Review of Current Research - Logically, the next step is to generalize the 

Chebyshev integral method from the model problem (4) to the Rayleigh equation (3). 
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However, this transition is complicated by the non-constant coefficients present in (3). To 

realize the problem,notice that in general the variable coefficients of the Rayleigh equation 

must be expanded in infinite series of the form ( 5 ) .  Then the coefficient series must 

be multiplied by the respective series approximating a term in the Rayleigh equation. 

Algebraically, the multiplication of multiple infinite series is very complicated and the 

resulting formulas are tedious to code. Therefore, a spectral method is sought to solve the 

Rayleigh equation which avoids the algebraic complications of multiplying multiple infinite 

series together. Such a method is outlined below. 

Another difficulty associated with the solution scheme developed for the model prob- 

lem (4) is the size of the resulting lamba matrix, (6). It is anticipated that a typical value 

of N will lead to a very large matrix. Hence, from a computational viewpoint it would 

be advantageous to reduce the order of the lamba matrix. Currently, methods combining 

finite differences and pseudospectral approximations are being developed. These methods 

have the potential to reduce the order of the lamba matrix from ( N  + 1)2 x (N  + 1)2 to 

(N + 1) x (N + 1). Schemes combining finite differences and spectral approximations, i.e., 

hybrid schemes, will be discussed in section 2.2.2. 

2.2.1 Pseudospectral Chebyshev Methods - Let L denote the partial differential oper- 

ator associated with the model problem (4). A scheme is sought to determine the complex 

wave numbers CY of the mociei probiem such that 

is satisfied exactly, where 4~ is a pseudospectral approximation of the solution. Here, the 

frequency w is fixed, and Xij  are collocation points in for 0 5 i , j  5 N defined by: 

X" = (z. t , ? i j ) ,  t 3  

= (cos [ 7r i / N ]  , cos [ 7rj / N ]  ) . 

7 



Furthermore, C#IN is defined by, 

where f j ( z )  ( z  = x or y) is given by, 

with c g  = C N  = 2 ,  and c j  = 1 for j = 1, , N - 1. 

The discretization of eqn. (4) is then given by evaluating eqn. (7) at  the collocation 

points in the interior of R and combining these equations with eqn. (8) satisfied a t  the 

collocation points on the boundary of R. The advantage of the pseudospectral Chebyshev 

method becomes clear when the operator L is defined to be the Rayleigh operator. Instead 

of expanding the variable coefficients of L as an infinite series, the coefficients are simply 

evaluated at  the collocation points. Thus, the algebraic problem encountered in the integral 

method is avoided. 

2.2.2 Hybrid Schemes - In order to reduce the order of the discretization matrix, 

resulting from a multiple series expansion, one variable expansions are currently being 

used to  develop a method to solve the model problem. In general, a one variable series 

will generate a smaller discretization matrix. 

Consider a solution of the form: 

Here the summation is taken from 0 to N. Moreover, the f i ’ s  are functions which may be 

used to approximate 4. 

To outline a hybrid scheme, let the functions, f i ,  in eqn. (10) be defined by eqn. 

(9). Therefore, eqn. (10) provides a pseudospectral approximation to the solution in the 
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x direction. In the y direction, a finite difference scheme will be applied. Let V1(y)  and 

V2(y)  denote arbitrary finite difference operators in y for the first and second derivatives 

respectively. Then substituting (10) into the model problem and applying the Vi(y)'s  

gives, 

[v2((y) - 2 w a v ' ( y ) ]  $N = [ h a d ,  + 2 a 2  - a221 $jV, (11) 

where the operator on the right hand side of eqn. (11) is approximated by the psuedospec- 

tral method. 

The boundary conditions are established by recasting the boundary value problem 

in y as an initial value problem. Since the derivative of $ with respect to y is unknown 

along y = -1 the solution is constructed as a sum of linear problems for which the initial 

conditions are 

aybj , (z i ,  -1) = 6ij. 

The solution on y = 1 at the collocation point xi is given by 

$ N ( Z i , I )  = ~ A j $ $ ( ~ i r l ) .  (12) 

Application of the boundary condition $(x, 1) = 0 yields a system of homogeneous simul- 

taneous equations for the Ai .  For a non-trivial solution the determinant of the coefficient 

matrix given by these equations must be zero. Only when a. is an eigenvalue will this 

condition be satisfied. 

This method is readily extended to the boundary conditions posed for the Rayleigh 

equation. Casting the non-separable boundary value problem in this way should .reduce 

the operation count by a factor of N 2  and yield a much more efficient evaluation of the 

eigenvalues. 

3. Boundary Element Methods and Shock Structure Tam and his co-workers have 

shown that both the large-scale coherent structures and the shock structure of jets may be 
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modeled using a wave analysis. The essential difference between the two cases is that the 

former are modeled as travelling waves while the latter are standing waves. In this section 

a numerical method, the boundary element method, has been used to determine the shock 

structure in jets of arbitrary cross-section modeled by a vortex sheet. In the next stage 

of the analysis the effect of finite mixing layer thickness and its axial variation will be 

considered. Modeling this physical problem provides a vehicle to test different numerical 

methods for the solution of the Rayleigh equation than those described in Section 2 as well 

as giving additional insight into the physical structure of jets of arbitrary shape. 

The shock-structure is to be analyzed for multiple jets of arbitrary shape. The model 

developed by Tam and his co-workers, e.g. Tam et al (1985),is used here. This model 

incorporates the effects of a finite thickness mixing layer and the axial flow divergence. 

We are concerned with solving the equations of linear hydrodynamic stability in which the 

mean flow characterstics are arbitrary functions in a plane normal to the jet axis or axes 

and a slowly-varying function of the axial distance. A typical cross-section of a single jet is 

shown in Fig.3. This defines three regions. In regions I and 111 the mean flow properties are 

constant. These regions correspond to the potential core of the jet and the ambient fluid 

surrounding the jet. Region I1 represents the jet shear layer in which the mean velocity 

and density 

Region I1 
(variable 
coefficients) 

Region I11 
(constant 
coefficients) 

Fig. 3: Sketch of Regions of Jet Cross-section 
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The equation for the pressure fluctuations to be solved in these regions is given by, 

(13) 
2k [ a U a p  a c i a p ]  + -- - [ k 2  - M 2 ( p  - p = 0, 

( P - k U )  a y  a y  az ax 

where, p is the pressure fluctuation, k is the axial wavenumber, p is the frequency, and 

U(z ,y )  is the mean axial velocity. Equation (13) is obtained by taking the divergence of 

the linearized momentum equation and using the continuity and energy equations. 

The analysis of the problem is carried out in the following stages: 

(i) A linear shock cell model is used as a first order approximation to analyze regions 

I and 111. In this model, the mixing layer of the jet, which is assumed to be thin, 

is approximated by a vortex sheet. This assumption eliminates the need to analyze 

region 11. The details of this model and the solution technique are discussed below. 

(ii) The inclusion of the effects of the finite thickness shear layer and that of axial flow 

divergence. The inclusion of these effects require a numerical solution in region 11. 

The solution obtained for region I1 has to be matched with the solutions of regions I 

and I11 at the common boundaries. 

(iii) Extension of the model to  include the effects of multiple jets of arbitrary cross-sections. 

3.1 Vortex Sheet Shock Cell Model - Consider a shock cell system in a jet column 

bounded by a vortex sheet as shown in Fig. 4. For convenience, a Cartesian coordinate 

systefii ieiiieied ai ilie i ioazk exit w i t h  ilie L-ctxib iii ihe ciireciiori of ihe jet cenieriirie 

will be used. The surface of the vortex sheet bounding the fully-expanded jet is given by 

S~(y,z) = 0. There is no disturbance outside the jet. The linearized equations of motion 

inside the vortex sheet are: 

2 
3 p = a . p .  
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p j ,  uj and a, are the density,velocity and the speed of sound of the fully expanded jet. p,  p 

and V are the density, pressure and velocity associated with the linear shock cell structure. 

SO(Y,Z) = 0 
surface of the 
vortex sheet 

shock 
cells 

nozzle 

Fig. 4: Vortex Sheet Shock Cell Model 

From eqns. (14) to (16) it is found that the pressure p satisfies the equation 

= 0, d2P v p  - A42 
3 s  

with p = 0 on the boundary So(y,z) = 0 and at  x = 0, p = Ap inside So(y,z) = 0 and 

VI = o .  

A general solution of the vortex sheet shock cell boundary value problem can be found 

by writing the pressure fluctuation as: 

where k is an as yet unknown axial wavenumber. The equation for $(y,z) may then be 

written 

V4 + X24 = 0 where, X 2  = ( M f  - l ) k 2 ,  (19) 

with 4 = 0 on So(y,z) 

is to be determined. 

= 0. This is an eigenvalue problem with k as the eigenvalue, which 
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The Boundary Element Method is used to  solve the Helmholtz equation (19). 

This integral technique is particularly suited to problems posed in an arbitrary geometry. 

The development of the method is discussed below. 

Consider an arbitrary domain as shown in Fig. 5 where the boundary is divided into 

= E(al,a2) are the locations of the node points and Q = a(b1,bz) are the N panels. 

locations of the mid points of each panel. 

Fig. 5:  Sketch of Boundary Divided into Elements 

Let F ( z  1 y) be the fundamental solution of the Helmholtz equation, i.e. 

( A  + X’))F(X I 9) = -S(Z - y), 

where, z = (zl,z2) and y = (y1,yz) and 3: and y are arbitrary. Then, 

Application of the divergence theorem and noting that 4 satisfies eqn. (16) and is zero on 

the boundary yields, 

1 
2 

a 4 ( E ) F ( ~  I E)da for i = 1 , 2 , 3 ,  ....., N 
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Approximating a+/av by a constant, say gi on each arc ri, we obtain, 

where, 

The approximate eigenvalues X are obtained from, 

Let Li be the length of the panel on the arc ri. Then, 

for i = j ,  

For i # j ,  

where, H(z) are Struve functions that can be expressed as a series of Bessel functions. 

The eigenvalues are obtained by a local iterative scehme which is given by, 

X k + l  = A k  - l / f ( X k ) ,  

Tr denotes the trace of a matrix and a prime denotes the derivative of the matrix with 

respect to Xk. 
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Thus the eigenvalues can be determined starting from an initial guess. 

The Boundary Element Method has been used to solve the vortex sheet shock cell 

model for rectangular and circular jets. These two geometries are chosen for the reason 

that their analytical solutions for the eigenvalues are easily obtainable. The numerical and 

the analytical values are compared for the smallest eigenvalue as this primarily determines 

the shock cell spacing. The results are shown in Tables I1 and 111. 

As is to be expected the number of panels has a great effect on the accuracy and the 

number of iterations required. A compromise between the accuracy required and the total 

CPU time has to be reached. 

Analytical value of X = 4.442883. 

Number or” 

Panels 

4 

8 

12 

20 

28 

40 

N 

Yo error A .  . . Number of Anurnerical rntttal 

Iterations 

29 

11 

11 

11 

12 

13 

(5.14421 ,O. 1056) (4.0,O.O) 15.78 

(4.3 1998 ,-0.05 169) (4 .O,O.O) 2.77 

(4 -40674 ,-0.02355) (5.0,O.O) 0.81 

(4.4 3237,-0.0062 7) (5 .O,O .O) 0.24 

(4.43795 ,-0.00243) (5 .O,O.O) 0.11 

(4.4405 7 ,-0.00086) (5 .O,O .O) 0.05 

Table 11: Calculations for a Rectangular Jet 
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Analytical value of X = 2.40482. 

Number of 

Panels 

4 

8 

12 

20 

30 

40 

Number of Xnurnerical A .  Enzttal . . % error 

Iterations 

28 

12 

12 

11 

12 

14 

(3.63751,0.07463) (3.0,O.O) 51.25 

(2.58661 ,-0.02283) (3.0,O.O) 7.60 

(2.47651 ,-0.00827) (3.25,O.O) 3.00 

(2.42874 ,-0.00201) (2.75,O.O) 1 .oo 

(2.4 1000,-0.00027) (2.75 ,O.O) 0.20 

(2.4 15 10,-0.00062) (2.75 ,O.O) 0.40 

Table 111: Calculations for a Circular Jet 

In the next stage of the analysis the effect of the finite thickness of the mixing region 

will be examined. 
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